A Novel Benchmark K-Means Clustering on Continuous Data

نویسندگان

  • K. Prasanna
  • Surya Narayana
چکیده

Cluster analysis is one of the prominent techniques in the field of data mining and k-means is one of the most well known popular and partitioned based clustering algorithms. K-means clustering algorithm is widely used in clustering. The performance of k-means algorithm will affect when clustering the continuous data. In this paper, a novel approach for performing k-means clustering on continuous data is proposed. It organizes all the continuous data sets in a sorted structure such that one can find all the data sets which are closest to a given centroid efficiently. The key institution behind this approach is calculating the distance from origin to each data point in the data set. The data sets are portioned into k-equal number of cluster with initial centroids and these are updated all at a time with closest one according to newly calculated distances from the data set. The experimental results demonstrate that proposed approach can improves the computational speed of the direct k-means algorithm in the total number of distance calculations and the overall time of computations particularly in handling continuous data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing k-means clusters on parallel Persian-English corpus

This paper compares clusters of aligned Persian and English texts obtained from k-means method. Text clustering has many applications in various fields of natural language processing. So far, much English documents clustering research has been accomplished. Now this question arises, are the results of them extendable to other languages? Since the goal of document clustering is grouping of docum...

متن کامل

Clustering of Fuzzy Data Sets Based on Particle Swarm Optimization With Fuzzy Cluster Centers

In current study, a particle swarm clustering method is suggested for clustering triangular fuzzy data. This clustering method can find fuzzy cluster centers in the proposed method, where fuzzy cluster centers contain more points from the corresponding cluster, the higher clustering accuracy. Also, triangular fuzzy numbers are utilized to demonstrate uncertain data. To compare triangular fuzzy ...

متن کامل

Combination of Transformed-means Clustering and Neural Networks for Short-Term Solar Radiation Forecasting

In order to provide an efficient conversion and utilization of solar power, solar radiation datashould be measured continuously and accurately over the long-term period. However, the measurement ofsolar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence,several studies were proposed in the literature to find mathematical and physical mod...

متن کامل

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

A Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS

Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011